© 2012 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission. Handbook of Smoke Control Engineering © 2012 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission. ABOUT THE AUTHORS John H. Klote Dr. John Klote is known throughout the world as an expert in smoke control due to his many books on the topic and his 19 years of fire research conducted at the U.S. National Institute of Standards and Tech- nology (NIST) in Gaithersburg, Maryland. For 11 years, he operated his own consulting company spe- cializing in analysis of smoke control systems. Klote developed a series of smoke control seminars that he teaches for the Society of Fire Protection Engineers. The primary author of the 2007 ICC book A Guide to Smoke Control in the 2006 IBC and the 2002 ASHRAE book Principles of Smoke Management, Dr. Klote is also the primary author of two other ASHRAE books about smoke control, and he has written chapters about smoke control in a number of books, as well as over 80 papers and articles on smoke control, smoke movement, CFD fire simulations, and other aspects of fire protection. He is a licensed professional engi- neer in Washington, DC. Klote earned his doctorate in mechanical engineering from George Washington University. Klote is a member of NFPA, a fellow of SFPE and a fellow of ASHRAE. He is a member and past chair of ASHRAE Technical Committee 5.6, Fire and Smoke Control, and a member of the NFPA Smoke Management Committee. James A. Milke Professor Milke is the chairman of the Department of Fire Protection Engineering at the University of Maryland. He earned his doctorate in aerospace engineering from the University of Maryland. Milke is an author of the ASHRAE book Principles of Smoke Management, and of the chapters “Smoke Movement in Buildings” and “Fundamentals of Fire Detection” in the 2008 NFPA Fire Protection Handbook.Heis also an author of the chapters “Analytical Methods for Determining Fire Resistance of Steel Members,” “Smoke Management in Covered Malls and Atria,” and “Conduction of Heat in Solids” in the 2008 SFPE Handbook. Milke is a licensed professional engineer in Delaware, a member of NFPA and American Society of Civil Engineers (ASCE), a fellow of SFPE, and a past chairman of the NFPA Smoke Manage- ment Committee. Paul G. Turnbull Paul Turnbull has been actively involved in the development of codes and standards for smoke control systems for over 24 years. He began his career as a hardware developer, designing RFI power line filters, and later moved into development of control products and accessories for building control systems. He then spent 10 years responsible for safety certifications of building controls, HVAC, fire alarm, and smoke control equipment. For the past 15 years, he has specialized in the development and application of gateways that enable fire alarm, security, and lighting control systems to be integrated with building con- trols in order to provide coordinated operations between these systems. He is an active member in several professional associations focused on control of fire and smoke. Turnbull has a baccalaureate degree in electrical engineering and a master's degree in computer science. He is a member of ASHRAE Technical Committee 5.6, Fire and Smoke Control, and the NFPA Smoke Management Committee. He is an instructor for the SFPE smoke control seminars. Ahmed Kashef Dr. Kashef is a group leader of Fire Resistance and Risk Management in the Fire Research Program at the Institute for Research in Construction, National Research Council of Canada. He holds a PhD in civil engineering and has more than 20 years research and practical experience. Dr. Kashef’s expertise involves applying numerical and experimental techniques in a wide range of engineering applications including fire risk analysis, fire dynamics, tenability, heat transfer, and smoke transport in the built envi- ronment and transportation systems. He has authored and co-authored more than 180 publications. He has managed a broad range of projects involving modeling and full-scale fire experiments to address fire related issues. This includes projects that investigated the ventilation strategies and detection systems in road and subway tunnels. He is the technical secretary of the ASHRAE Technical Committee 5.6, Fire © 2012 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission. and Smoke Control, and the chair of the research subprogram of ASHRAE Technical Committee 5.9, Enclosed Vehicular Facilities. Dr. Kashef is a registered professional engineer in the province of Ontario, and a member of the NFPA Technical Committee 502 on Road Tunnel and Highway Fire Protection. He is an associate member of the World Road Association (PIARC), Working Group 4, Ventilation and Fire Control and a corresponding member of the Technical Committee 4 Road Tunnel Operations. Michael J. Ferreira Michael Ferreira is a senior fire protection engineer and project manager at Hughes Associates, a fire science and engineering consulting company. He has been primarily involved with smoke management system design projects for the past 17 years and has published several articles on the innovative use of computer models for these systems. Ferreira has extensive experience in performing smoke control com- missioning testing and calibrating computer models using field data. He was the lead investigator responsi- ble for evaluating smoke control system performance in NIST’s investigation of the World Trade Center disaster. He has also conducted a performance-based analysis of the smoke control system at the Statue of Liberty. Ferreira is a professional engineer and holds a BS in Mechanical Engineering and an MS in Fire Protection Engineering from Worcester Polytechnic Institute. He is a member of the NFPA Smoke Man- agement Systems Committee, and is an instructor for the NFPA and SFPE smoke control seminars. © 2012 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission. ASHRAE ASHRAE, founded in 1894, is a building technology society with more than 50,000 members worldwide. The Society and its members focus on building systems, energy efficiency, indoor air quality and sustainability within the industry. Through research, standards writing, publishing, and continuing education, ASHRAE shapes tomorrow’s built environment today. 1791 Tullie Circle, NE Atlanta, GA 30329 1-800-527-4723 www.ashrae.org International Code Council International Code Council is a member-focused association dedicated to helping the building safety community and construction industry provide safe, sustainable, and affordable construction through the development of codes and standards used in the design, build, and compliance process. Most U.S. communities and many global markets choose the International Codes. ICC Evaluation Service (ICC-ES), a subsidiary of the International Code Council, has been the industry leader in performing technical evalua- tions for code compliance fostering safe and sustainable design and construction. Headquarters: 500 New Jersey Avenue, NW, 6th Floor, Washington, DC 20001-2070 District Offices: Birmingham, AL; Chicago. IL; Los Angeles, CA 1-888-422-7233 www.iccsafe.org Society of Fire Protection Engineers Organized in 1950, the Society of Fire Protection Engineers (SFPE) is the profes- sional organization that represents engineers engaged in fire protection worldwide. Through its membership of over 5000 professionals and 65 international chapters, SFPE advances the science and practice of fire protection engineering while maintain- ing a high ethical standard. SFPE and its members serve to make the world a safer place by reducing the burden of unwanted fire through the application of science and technology. To become a member, go to www.sfpe.org. 7315 Wisconsin Ave., #620E Bethesda, MD 20814 1-301-718-2910 www.sfpe.org National Fire Protection Association The National Fire Protection Association (NFPA) is an international nonprofit organization that was established in 1896. The company's mission is to reduce the worldwide burden of fire and other hazards on the quality of life by providing and advocating consensus codes and standards, research, training, and education. 1 Batterymarch Park Quincy, MA 02169-7471 1-617-770-3000 www.nfpa.org © 2012 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission. Handbook of Smoke Control Engineering John H. Klote James A. Milke Paul G. Turnbull Ahmed Kashef Michael J. Ferreira © 2012 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission. ISBN 978-1-936504-24-4 2012 John H. Klote. Published by ASHRAE. All rights reserved. Published in cooperation with International Code Council, Inc., National Fire Protection Association, and Society of Fire Protection Engineers. ASHRAE 1791 Tullie Circle, N.E. Atlanta, GA 30329 www.ashrae.org Printed in the United States of America Printed on 30% post-consumer waste using soy-based inks. Illustrations by John H. Klote, unless otherwise credited. ASHRAE has compiled this publication with care, but ASHRAE and its publishing partners have not investigated, and ASHRAE and its publishing partners expressly disclaim any duty to investigate, any product, service, process, procedure, design, or the like that may be described herein. The appearance of any technical data or editorial material in this publication does not constitute endorsement, warranty, or guaranty by ASHRAE and its publishing partners of any product, service, process, procedure, design, or the like.
Recommended publicationsPreparing HVAC Systems Before Reoccupying a Building by JOHN MCCARTHY, SC.D., C.I.H., MEMBER ASHRAE; KEVIN COGHLAN, C.I.H
TECHNICAL FEATURE This article was published in ASHRAE Journal, January 2021. Copyright 2020 ASHRAE. Posted at www.ashrae.org. This article may not be copied and/or distributed electronically or in paper form without permission of ASHRAE. For more information about ASHRAE Journal, visit www.ashrae.org. Preparing HVAC Systems Before Reoccupying A Building BY JOHN MCCARTHY, SC.D., C.I.H., MEMBER ASHRAE; KEVIN COGHLAN, C.I.H. As states across the U.S. roll out new phases of reopening and ease social distanc- ing restrictions instituted to “flatten the curve” of infection from SARS-CoV-2 (the virus that causes COVID-19), commercial building owners and facility manag- ers are seeking direction in preparing their spaces to a return to near-normal levels of occupancy. World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC) recommendations have focused on “de-densifying” spaces and disinfection of surfaces, while the ASHRAE Epidemic Task Force’s comprehen- sive Building Readiness guidance addresses strategies for preparing HVAC systems for buildings reopening after COVID-19 closures.1 Still, facility engineers have been wondering whether disinfecting their facility’s HVAC system is a further protective step to take to prepare for reopening—and about what else they should do. While no blanket answer exists to fit every scenario reduced loads or turned off as an energy-saving and every building type, the current science2 indicates measure. that, in general, disinfection of mechanical systems is not likely to be necessary. However, that doesn’t mean How SARS-CoV-2 Transmission Impacts Disinfection there isn’t work to be done—or risks to address before Recommendations reopening or expanding the number of occupants To understand why HVAC system disinfection may not in the space.
Position Document on Resiliency in the Built EnvironmentASHRAE and CIBSE Position Document on Resiliency in the Built Environment Approved by ASHRAE Board of Directors June 26, 2019 Approved by the CIBSE Board July 11, 2019 Expires June 26, 2022 © 2019 ASHRAE and CIBSE ASHRAE • 1791 Tullie Circle, NE • Atlanta, Georgia 30329-2305 • 404-636-8400 • www.ashrae.org CIBSE • 222, Balham High Road • London SW12 9BS • 0208 675 5211 • www.cibse.org © 2019 ASHRAE and CIBSE. For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without copyright holders' prior written permission. COMMITTEE ROSTER The ASHRAE and CIBSE Position Document on Resiliency in the Built Environment was developed by ASHRAE’s Resiliency in the Built Environment Position Document Committee formed on October 10, 2017, with David Under- wood as its chair. David Underwood Andrew Persily Retired NIST Oakville, ON, Canada Gaithersburg, MD, USA Scott Campbell Thomas Phoenix National Ready Mixed Concrete Association Clark Patterson Lee Milwaukee, WI, USA Greensboro, NC, USA Hywel Davies CIBSE Paul Torcellini London, United Kingdom Eastford, CT, USA Bill McQuade Chandra Sekhar AHRI National University of Singapore Arlington, VA, USA Singapore, Singapore The CIBSE Technology Committee was responsible for oversight of the CIBSE contribution to this position docu- ment. Cognizant Committees The chairperson of ASHRAE Technical Committee 2.10, Resilience and Security, also served as an ex-officio member: Jason DeGraw Arvada, CO, USA ASHRAE is a registered trademark in the U.S. Patent and Trademark Office, owned by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. © 2019 ASHRAE and CIBSE. For personal use only.
ASHRAE Position Document on Filtration and Air CleaningASHRAE Position Document on Filtration and Air Cleaning Approved by ASHRAE Board of Directors January 29, 2015 Reaffirmed by Technology Council January 13, 2018 Expires January 23, 2021 ASHRAE 1791 Tullie Circle, NE • Atlanta, Georgia 30329-2305 404-636-8400 • fax: 404-321-5478 • www.ashrae.org © 2015 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission. COMMITTEE ROSTER The ASHRAE Position Document on Filtration and Air Cleaning was developed by the Society's Filtration and Air Cleaning Position Document Committee formed on January 6, 2012, with Pawel Wargocki as its chair. Pawel Wargocki, Chair Dean A. Saputa Technical University of Denmark UV Resources Kongens Lyngby, Denmark Santa Clarita, CA Thomas H. Kuehn William J. Fisk University of Minnesota Lawrence Berkeley National Laboratory Minneapolis, MN Berkeley, CA H.E. Barney Burroughs Jeffrey A. Siegel Building Wellness Consultancy, Inc. The University of Toronto Johns Creek, GA Toronto, ON, Canada Christopher O. Muller Mark C. Jackson Purafil Inc. The University of Texas at Austin Doraville, GA Austin, TX Ernest A. Conrad Alan Veeck BOMA International National Air Filtration Association Washington DC Virginia Beach, VA Other contributors: Dean Tompkins Madison, WI for his contribution on photocatalytic oxidizers Paul Francisco, Ex-Officio Cognizant Committee Chair Environmental Health Committee University of Illinois Champaign, IL ASHRAE is a registered trademark in the U.S. Patent and Trademark Office, owned by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. © 2015 ASHRAE (www.ashrae.org). For personal use only.
ANSI/ASHRAE/ACCA Standard 180-2018ANSI/ASHRAE/ACCA Standard 180-2018 (Supersedes ANSI/ASHRAE/ACCA Standard 180-2012) Standard Practice for Inspection and Maintenance of Commercial Building HVAC Systems Approved by ASHRAE on June 11, 2018; by the Air Conditioning Contractors of America on May 13, 2018; and by the American National Standards Institute on June 11, 2018. ASHRAE® Standards are scheduled to be updated on a five-year cycle; the date following the Standard number is the year of ASHRAE approval. The latest edition of an ASHRAE Standard may be purchased on the ASHRAE website (www.ashrae.org) or from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: [email protected]. Fax: 678-539-2129. Telephone: 404-636-8400 (worldwide) or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions. © 2018 ASHRAE and ACCA® ISSN 1041-2336 ASHRAE Standard Project Committee 180 Lead Cognizant TC: 7.3, Operation and Maintenance Management Co-Cognizant TCs: 2.4, Particulate Air Contaminants and Particulate Contaminant Removal Equipment; and TC 9.8, Large Building Air-Conditioning Applications SPLS Liaison: R. Lee Millies, Jr. Thomas L. Paxson*, Chair Kristin H. Heinemeier* Heather L. Platt* Donald R. Langston*, Vice-Chair Donald C. Herrmann Donald Prather* Richard A. Danks*, Secretary Peter C. Jacobs* Gregg A. Ray* Hywel Davies Michael J. Lawing* George Rodriguez* Bill R. Benito* Benjamin E. Lipscomb Dale T. Rossi* Michael Blazey Phil London* Robert J. Roth Glenn Friedman* Phil Maybee* Jeff O. Sturgeon* Michael W. Gallagher Marc Newman* John Warfield * Denotes members of voting status when the document was approved for publication ACCA–EI Standards Task Team 2018–2019 Phil Forner, Chair Warren Lupson Matt Todd Dave Galbreath, Vice-Chair Raymond Granderson Brent Ursenbach Danny Halel, Secretary Timothy Offord Tom Jackson Joe Pacella ASHRAE STANDARDS COMMITTEE 2017–2018 Steven J.
Assessment of Design Procedures for Vertical Borehole Heat ExchangersPROCEEDINGS, Fortieth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 26-28, 2015 SGP-TR-204 Assessment of Design Procedures for Vertical Borehole Heat Exchangers Eleonora Sailer1, David M.G. Taborda2 and James Keirstead2 1AECOM, Chelmsford, CM1 1HT, UK, formerly Imperial College London, UK 2Imperial College London, Dept. Civil & Environmental Engineering, London SW7 2AZ UK [email protected] Keywords: Borehole heat exchanger, low enthalpy systems, ground source heat, design guidelines ABSTRACT The use of ground source energy systems is a well-established method to provide low cost heating to buildings, diversify the energy mix and help meeting increasingly stricter sustainability targets. However, considerable uncertainties remain over their efficient design, with several standards, guidelines and manuals being proposed over the last few years. This paper aims at providing insight into the implications to the design of a vertical borehole heat exchanger of the adoption of different design procedures. The hypothetical case of a typical dwelling located in London, UK, is analysed in order to highlight the impact on the final design of the chosen methodology. Moreover, a parametric study using an analytical design procedure was performed to point out the influence of various factors, such as borehole characteristics and thermal properties of the ground. It is shown that there are considerable discrepancies between design methods and that uncertainties in some input parameters, such as the thermal properties of the ground, which for relatively small systems are often selected from tables rather than measured in situ, may have a substantial influence on the length of borehole required. 1. INTRODUCTION Borehole Heat Exchangers (BHE) are one type of Ground Source Heat Pump (GSHP) systems and are classified as low enthalpy geothermal systems since they make use of low temperature differences.
Humidity and Occupants PresentationHumidity and Occupants What the Latest in Humidity Research Means for You Presenters Matt Nowak North American Sales Manager Armstrong International Eric Brodsky, PE Director of Technology Research Products Inc. / Aprilaire / DriSteem Duncan Curd General Manager Nortec Humidity Ltd. Jeremy Wolfe National Sales & Marketing Manager CAREL USA Agenda 1. Fundamentals of Humidity • Key Terms and Definitions • How indoor humidity changes throughout the year • Where humidification matter most 2. Humidity and People • Historical Research • Impacts of moisture to the human body • Recent advances in humidity research 3. Recent Research • Microbiome Study Details • Example of Hospital Savings • Results and Recommendations 4. Humidity in Your Building • Technologies for Humidification • Cooling and Humidifying with Adiabatic Systems • Humidification with Steam • Case Studies / Installation Examples What is Humidity and How Do We Measure It? Humidity • The amount of water vapor in the air • Measured in “Absolute” or “Relative” terms Absolute Humidity • Mass of water in particular volume of air • Expressed as mass (grains/lbda or gw/kgda) Relative Humidity • Amount of water vapor in the air relative to how much it can hold at a given temperature (%) 25 20 15 Maximum Moisture Content Of Air Depends 10 5 0 On Air Temperature Grains Grains of/ Water Cubic Foot of Air 0 5 -5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 -10 100 Air Temperature (F) How Much Water Can the Air Hold? Air Heated From 10°F @ 100% RH to 70 °F 1 lb (kg) of Air Would Only Be Less Than 10% RH 35°F (2°C) 30 gr (2g/kg) The Psychrometric Chart Typical RH in Las Vegas, NV Typical Temps in Las Vegas, NV Need for Humidification Summer (July 19th) – 104F @ 10% RH = 72F @ 27.5% RH Winter (Dec.
Global Air-Conditioning Market Set for Growth and Technology ChangesINDUSTRY NEWS This article was published in ASHRAE Journal, June 2020. Copyright 2020 ASHRAE. Posted at www.ashrae.org. This article may not be copied and/or distributed electronically or in paper form without permission of ASHRAE. For more information about ASHRAE Journal, visit www.ashrae.org. Global Air-Conditioning Market Set For Growth and Technology Changes BRACKNELL, BERKSHIRE, U.K.—Air conditioning already repre- GLOBAL HVAC AND BUILDING AUTOMATION CONTROL SYSTEMS (BACS) MARKET, 2019, $US BILLION sents the biggest segment of the global HVAC market, 51.4 62.4 44.4 8.7 18.9 and with rising global average temperatures, the need for cooling will keep growing, according to a BSRIA Commercial AC Residential AC Traditional Heating market report published in March. Renewable Heating BACS However, as the world’s focus will remain on the efforts SOURCE: BSRIA to limit global warming, the air-conditioning market DX SPLITS VS CHILLERS, BY VOLUME (COMPOUND ANNUAL GROWTH RATE, 2018-2024) will keep shifting toward more efficient products, the 14% use of refrigerants with lower global warming potential 12% and toward connectivity that will allow for remote moni- 10% toring of units and systems bringing vital energy and 8% operational efficiencies. 6% 4% In 2019 the global sales of air-conditioning units 2% increased by 2.3% year-on-year in volume and by 2.5% in 0% terms of USD value. Global Europe MEIA ASIA Pacific Americas In the United States, the AC market recorded overall Mini-VRF Maxi-VRF Multi-Splits Total Chillers SOURCE: BSRIA SOURCE: BSRIA growth in 2019, despite being a mature market, driven by a heathy economic growth, accessible and afford- three markets.
Air Conditioning and Refrigeration ChronologyAir Conditioning and Refrigeration C H R O N O L O G Y Significant dates pertaining to Air Conditioning and Refrigeration revised May 4, 2006 Assembled by Bernard Nagengast for American Society of Heating, Refrigerating and Air Conditioning Engineers Additions by Gerald Groff, Dr.-Ing. Wolf Eberhard Kraus and International Institute of Refrigeration End of 3rd. Century B.C. Philon of Byzantium invented an apparatus for measuring temperature. 1550 Doctor, Blas Villafranca, mentioned process for cooling wine and water by adding potassium nitrate About 1597 Galileo’s ‘air thermoscope’ Beginning of 17th Century Francis Bacon gave several formulae for refrigeration mixtures 1624 The word thermometer first appears in literature in a book by J. Leurechon, La Recreation Mathematique 1631 Rey proposed a liquid thermometer (water) Mid 17th Century Alcohol thermometers were known in Florence 1657 The Accademia del Cimento, in Florence, used refrigerant mixtures in scientific research, as did Robert Boyle, in 1662 1662 Robert Boyle established the law linking pressure and volume of a gas a a constant temperature; this was verified experimentally by Mariotte in 1676 1665 Detailed publication by Robert Boyle with many fundamentals on the production of low temperatures. 1685 Philippe Lahire obtained ice in a phial by enveloping it in ammonium nitrate 1697 G.E. Stahl introduced the notion of “phlogiston.” This was replaced by Lavoisier, by the “calorie.” 1702 Guillaume Amontons improved the air thermometer; foresaw the existence of an absolute zero of temperature 1715 Gabriel Daniel Fahrenheit developed mercury thermoneter 1730 Reamur introduced his scale on an alcohol thermometer 1742 Anders Celsius developed Centigrade Temperature Scale, later renamed Celsius Temperature Scale 1748 G.
New Guidance for Residential Air Cleaners- ASHRAE Journal Sep 2019TECHNICAL FEATURE ©ASHRAE www.ashrae.org. Used with permission from ASHRAE Journal at www.epa.gov. This article may not be copied nor distributed in either paper or digital form without ASHRAE’s permission. For more information about ASHRAE, visit www.ashrae.org. New Guidance for Residential Air Cleaners BY LEW HARRIMAN, FELLOW/LIFE MEMBER ASHRAE; BRENT STEPHENS, PH.D, MEMBER ASHRAE; TERRY BRENNAN, MEMBER ASHRAE As HVAC&R professionals, we in the ASHRAE community are sometimes asked ques- tions about residential indoor air quality (IAQ) and how to improve it. What contami- nants are most hazardous? How do I get rid of a particular smell? Should I use this air cleaner or that filter? Sadly, our friends and family generally lose patience when we helpfully suggest: “Well, it’s complicated. But just read Chapters 46, 60 and 62 in the ASHRAE Handbook—HVAC Applications, because there’s great information in there.” In general, we find that information seekers are frustrated by such helpful advice. Usually, the question is repeated (with some heat) in a form such as: “You’re the professional. Can’t you boil it down? What should I DO in my HOUSE?” Fortunately, two new resources can help you better mainstream and social media. When you get questions answer such questions. First, the ASHRAE Residential from friends and family about residential air filtration Indoor Air Quality Guide1 is a comprehensive summary of and air cleaners, you may find the U.S. Enivronmental IAQ for homes and apartments, written by our mem- Protection Agency’s recently updated publications help- ber colleagues and published by ASHRAE in 2018.
Large Passive House Building HVAC the New England Experience2020‐08‐19 1 Large Passive House Building HVAC The New England Experience Mike Woolsey, Certified Passive House Designer Member iPHA, ASHRAE Voting Member ASHRAE SPC 227P Passive Building Business Development Manager Swegon [email protected] +1 612 685 6519 Course credit: 1.0 PDH; 1.0 PHI CEU 2 Integrating HVAC into Large Passive House Building Design 2 1 2020‐08‐19 Learning Objectives 1. Understand the benefits of energy recovery ventilators in general, with special focus on their benefits to the Passive House project. 2. Understand the properties of energy recovery ventilators that are most valuable on Passive House projects. 3. Understand the limits of energy recovery ventilators when applied on Passive House projects. 4. Understand the integration of energy recovery ventilators in the Passive House design, with case studies. 3 Integrating HVAC into Large Passive House Building Design 3 Passive House Characteristics 4 2 2020‐08‐19 DRAMATIC ENERGY SAVINGS Approx90% Up to75% reduction in heating & cooling reduction in total energy usage. Introduction to Passive House www.naphnetwork.org 5 FROM EXPERIMENT TO POLICY 1st Modern Passive House: 1990 Introduction to Passive House www.naphnetwork.org 6 3 2020‐08‐19 BOLD IMPLEMENTATION BRUSSELS, 2015: All buildings, private, public, new and retrofitted mandated Passive House performance. EUROPE, 2020: Nearly zero-energy buildings. Introduction to Passive House www.naphnetwork.org 7 COMPLEX BUILDINGS IN VARIED CLIMATES Introduction to Passive House www.naphnetwork.org 8 4 2020‐08‐19 PASSIVE
Interpretation 62.2-2007-10 – November 8, 2011INTERPRETATION IC 62.2-2007-10 OF ANSI/ASHRAE STANDARD 62.2-2007 Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings Approved November 8, 2011 Request from: Katrin Klingenberg ([email protected]), Passive House Institute US (PHIUS), 110 South Race Street, Suite 202, Urbana, IL 61801. Reference: This request for interpretation refers to the requirements presented in ANSI/ASHRAE Standard 62.2-2007, Section 5.3 and Table 5.2, relating to continuous mechanical exhaust requirements for kitchens. Background: The Passive House Institute US is advocating and promoting the international Passive House Building Energy Standard to be widely adopted in the United States. The Passive House Building Energy Standard core technical piece is an optimized continuous balanced mechanical ventilation system. The supply and exhaust airflows required under this standard are determined a) by indoor air quality fresh air requirements based on occupants under consideration of the airtightness of the envelope and b) the exhaust air requirements based on the number of bathrooms and kitchens. Bathrooms require 24 cfm continuous exhaust and kitchens require 35 cfm continuous exhaust. The kitchen exhaust is part of the continuous balanced mechanical ventilation system with very high heat recovery efficiency and does not need to be vented directly to the outside. Charcoal filtration at the source of cooking is required before the kitchen exhaust air enters the kitchen exhaust intake. In fact, direct venting is to be avoided in a Passive House to minimize unnecessary heat loss through penetrations of the envelope and to optimize the overall energy balance of the home.
Meeting IAQ Needs with Enhanced Filtration (A Review of ASHRAE Standards Related to Building Air Quality)
Carrier Engineering Newsletter Volume 5, Issue 1 Meeting IAQ Needs with Enhanced Filtration (A Review of ASHRAE Standards Related to Building Air Quality) Achieving balance among desired goals for indoor air quality (IAQ), energy consumption, and occupant comfort within the built environment is challenging. The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) endeavors to achieve this through guidelines and standards focused on advancing building science as it relates to environmental quality. This article will review the commonly used design guides found in ANSI/ASHRAE Standard 62.1, “Ventilation for Acceptable Indoor Air Quality.”1 The current form of ANSI/ASHRAE Standard 62.1 employs two mechanical ventilation procedures to provide acceptable IAQ in buildings: the Ventilation Rate Procedure and the Indoor Air Quality Procedure. While the Ventilation Rate Procedure provides only a dilution solution for the control of typical offending contaminants for a specified occupancy, the Indoor Air Quality Procedure provides a directed approach by reducing and controlling the concentrations of selected air contaminants of concern through both dilution and enhanced air cleaning. Rather than relying only on diluting the concentration of contaminants with outdoor air, designing with enhanced filtration of both recirculated and ventilation outdoor air can improve IAQ and result in the protection of the occupied space. This newsletter will focus on the application of enhanced particle, gas-phase and biological filtration for compliance with Standard 62.1. An outline of the design aspects to consider will be reviewed, with the focus on achieving acceptable levels of contaminants of concern within the occupied space while considering the desire to meet high-performance building standards.